Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A late-Ediacaran crown-group sponge animal

Subjects

Abstract

Sponges are the most basal metazoan phylum1 and may have played important roles in modulating the redox architecture of Neoproterozoic oceans2. Although molecular clocks predict that sponges diverged in the Neoproterozoic era3,4, their fossils have not been unequivocally demonstrated before the Cambrian period5,6,7,8, possibly because Precambrian sponges were aspiculate and non-biomineralized9. Here we describe a late-Ediacaran fossil, Helicolocellus cantori gen. et sp. nov., from the Dengying Formation (around 551–539 million years ago) of South China. This fossil is reconstructed as a large, stemmed benthic organism with a goblet-shaped body more than 0.4 m in height, with a body wall consisting of at least three orders of nested grids defined by quadrate fields, resembling a Cantor dust fractal pattern. The resulting lattice is interpreted as an organic skeleton comprising orthogonally arranged cruciform elements, architecturally similar to some hexactinellid sponges, although the latter are built with biomineralized spicules. A Bayesian phylogenetic analysis resolves H. cantori as a crown-group sponge related to the Hexactinellida. H. cantori confirms that sponges diverged and existed in the Precambrian as non-biomineralizing animals with an organic skeleton. Considering that siliceous biomineralization may have evolved independently among sponge classes10,11,12,13, we question the validity of biomineralized spicules as a necessary criterion for the identification of Precambrian sponge fossils.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Holotype of H. cantori gen. et sp. nov., NIGP-176531.
Fig. 2: Hierarchical rectangles on the surface of H. cantori gen. et sp. nov., holotype, NIGP-176531.
Fig. 3: More specimens of H. cantori gen. et sp. nov.
Fig. 4: Morphological reconstruction and phylogenetic position of H. cantori gen. et sp. nov.

Similar content being viewed by others

Data availability

Fossils illustrated in this paper are accessioned in the NIGP (catalogue nos. NIGP-176531 to NIGP-176538, NIGP-155870, NIGP-201942). Data collected or generated during this study are included in this article and its Supplementary Information. The nomenclature of H. cantori gen. et sp. nov. is registered in zoobank and the Life Science Identifier for this publication is urn:lsid:zoobank.org:pub:06F779B0-BA00-41AF-A6F7-A552BA8F6BF1.LSID.

References

  1. Redmond, A. K. & McLysaght, A. Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat. Commun. 12, 1783 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7, 257–265 (2014).

    ADS  CAS  Google Scholar 

  3. dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  5. Antcliffe, J. B., Callow, R. H. T. & Brasier, M. D. Giving the early fossil record of sponges a squeeze. Biol. Rev. 89, 972–1004 (2014).

    PubMed  Google Scholar 

  6. Botting, J. P. & Muir, L. A. Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27, 1–29 (2018).

    Google Scholar 

  7. Turner, E. C. Possible poriferan body fossils in early Neoproterozoic microbial reefs. Nature 596, 87–91 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neuweiler, F. et al. Keratose sponges in ancient carbonates—a problem of interpretation. Sedimentology 70, 927–968 (2023).

    Google Scholar 

  9. Tang, Q., Wan, B., Yuan, X., Muscente, A. D. & Xiao, S. Spiculogenesis and biomineralization in early sponge animals. Nat. Commun. 10, 3348 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  10. Aguilar-Camacho, J. M., Doonan, L. & McCormack, G. P. Evolution of the main skeleton-forming genes in sponges (phylum Porifera) with special focus on the marine Haplosclerida (class Demospongiae). Mol. Phylogenet. Evol. 131, 245–253 (2019).

    CAS  PubMed  Google Scholar 

  11. Murdock, D. J. E. The ‘biomineralization toolkit’ and the origin of animal skeletons. Biol. Rev. 95, 1372–1392 (2020).

    PubMed  Google Scholar 

  12. Xiao, S. Ediacaran sponges, animal biomineralization and skeletal reefs. Proc. Natl Acad. Sci. USA 117, 20997–20999 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shimizu, K. et al. Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera. Nat. Commun. 15, 181 (2024).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dunn, F. S. et al. The developmental biology of Charnia and the eumetazoan affinity of the Ediacaran rangeomorphs. Sci. Adv. 7, eabe0291 (2021).

    ADS  PubMed  PubMed Central  Google Scholar 

  15. Liu, A. G., Matthews, J. J., Menon, L. R., McIlroy, D. & Brasier, M. D. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma). Proc. R. Soc. B 281, 20141202 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Dunn, F. S. et al. A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK. Nat. Ecol. Evol. 6, 1095–1104 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, Z., Zhou, C., Yuan, X. & Xiao, S. Death march of a segmented and trilobate bilaterian elucidates early animal evolution. Nature 573, 412–415 (2019).

    ADS  CAS  PubMed  Google Scholar 

  18. Love, G. D. et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–721 (2009).

    ADS  CAS  PubMed  Google Scholar 

  19. Nettersheim, B. J. et al. Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals. Nat. Ecol. Evol. 3, 577–581 (2019).

    PubMed  Google Scholar 

  20. Zumberge, J. A. et al. Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals. Nat. Ecol. Evol. 2, 1709–1714 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Muscente, A. D., Marc Michel, F., Dale, J. G. & Xiao, S. Assessing the veracity of Precambrian ‘sponge’ fossils using in situ nanoscale analytical techniques. Precambrian Res. 263, 142–156 (2015).

    ADS  CAS  Google Scholar 

  22. Sperling, E. A., Robinson, J. M., Pisani, D. & Peterson, K. J. Where’s the glass? Biomarkers, molecular clocks and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology 8, 24–36 (2010).

    CAS  PubMed  Google Scholar 

  23. Wang, X. et al. The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China. J. Paleontol. 94, 1034–1050 (2020).

    ADS  Google Scholar 

  24. Wan, B. et al. A tale of three taphonomic modes: the Ediacaran fossil Flabellophyton preserved in limestone, black shale and sandstone. Gondwana Res. 84, 296–314 (2020).

    ADS  Google Scholar 

  25. Chen, Z. et al. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci. Rep. 4, 4180 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen X., Zhou P., Zhang B., Wei, K. & Zhang, M. Lithostratigraphy, biostratigraphy, sequence stratigraphy and carbon isotope chemostratigraphy of the upper Ediacarian in Yangtze Gorges and their significance for chronostratigraphy. South China Geol. 32, 87–105 (2016).

  27. Yang, B., Warren, L. V., Steiner, M., Smith, E. F. & Liu, P. Taxonomic revision of Ediacaran tubular fossils: Cloudina, Sinotubulites and Conotubus. J. Paleontol. 96, 256–273 (2022).

    ADS  Google Scholar 

  28. Wang, Y., Wang, Y. & Du, W. A rare disc-like holdfast of the Ediacaran macroalga from South China. J. Paleontol. 91, 1091–1101 (2017).

    ADS  Google Scholar 

  29. Laflamme, M., Gehling, J. G. & Droser, M. L. Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia. J. Paleontol. 92, 323–335 (2018).

    ADS  Google Scholar 

  30. Hofmann, H. J., O’Brien, S. J. & King, A. F. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. J. Paleontol. 82, 1–36 (2008).

    ADS  Google Scholar 

  31. Mitchell, E. G. & Harris, S. Mortality, population and community dynamics of the glass sponge dominated community “The Forest of the Weird” from the Ridge Seamount, Johnston Atoll, Pacific Ocean. Front. Mar. Sci. 7, 565171 (2020).

    Google Scholar 

  32. Brusca, R. C., Moore, W. & Shuster, S. M. Invertebrates (Sinauer Associates, 2016).

  33. Xiao, S., Shen, B., Zhou, C., Xie, G. & Yuan, X. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proc. Natl Acad. Sci. USA 102, 10227–10232 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ford, T. D. Pre-Cambrian fossils from Charnwood Forest. Proc. Yorks. Geol. Soc. 31, 211–217 (1958).

    Google Scholar 

  35. Glaessner, M. F. & Daily, B. The geology and Late Precambrian fauna of the Ediacara fossil reserve. Rec. South Aust. Mus. 13, 369–401 (1959).

    Google Scholar 

  36. Clapham, M. E., Narbonne, G. M., Gehling, J. G., Greentree, C. & Anderson, M. M. Thectardis avalonensis: a new Ediacaran fossil from the Mistaken Point biota, Newfoundland. J. Paleontol. 78, 1031–1036 (2004).

    ADS  Google Scholar 

  37. Sperling, E. A., Peterson, K. J. & Laflamme, M. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans. Geobiology 9, 24–33 (2011).

    CAS  PubMed  Google Scholar 

  38. Hahn, G. & Pflug, H. D. Polypenartige organismen aus dem Jung-Präkambrium (Nama-Gruppe) von Namibia. Geol. Palaeontol. 19, 1–13 (1985).

  39. Gehling, J. G. & Rigby, J. K. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J. Paleontol. 70, 185–195 (1996).

    ADS  Google Scholar 

  40. Francovschi, I., Grădinaru, E., Li, H., Shumlyanskyy, L. & Ciobotaru, V. U–Pb geochronology and Hf isotope systematics of detrital zircon from the late Ediacaran Kalyus Beds (East European Platform): palaeogeographic evolution of southwestern Baltica and constraints on the Ediacaran biota. Precambrian Res. 355, 106062 (2021).

    CAS  Google Scholar 

  41. Vaziri, S. H., Majidifard, M. R. & Laflamme, M. Diverse assemblage of Ediacaran fossils from Central Iran. Sci. Rep. 8, 5060 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  42. Smith, E. F., Nelson, L. L., Tweedt, S. M., Zeng, H. & Workman, J. B. A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link. Proc. R. Soc. B 284, 20170934 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. McMahon, S., Tarhan, L. G. & Briggs, D. E. G. Decay of the sea anemone Metridium (Actiniaria): implications for the preservation of cnidarian polyps and other soft-bodied diploblast-grade animals. Palaios 32, 388–395 (2017).

    ADS  Google Scholar 

  44. Ou, Q. et al. Dawn of complex animal food webs: a new predatory anthozoan (Cnidaria) from Cambrian. Innovation 3, 100195 (2022).

    PubMed  Google Scholar 

  45. Zhao, Y. et al. An early Cambrian mackenziid reveals links to modular Ediacaran macro-organisms. Pap. Palaeontol. 8, e1412 (2022).

    MathSciNet  Google Scholar 

  46. Hall, J. & Clarke, J. M. A Memoir on the Palaeozoic Reticulate Sponges: Constituting the Family Dictyospongidae (Wynkoop Hallenbeck Crawford Company, 1898).

  47. Carrera, M., Rustan, J., Vaccari, N. & Ezpeleta, M. A Mississippian hexactinellid sponge from the Western Gondwana: taxonomic and paleobiogeographic implications. Acta Palaeontol. Pol. 63, 63–70 (2018).

  48. Rigby, J. K. & Keyes, R. First report of hexactinellid dictyosponges and other sponges from the Upper Mississippian Bangor Limestone, northwestern Alabama. J. Paleontol. 64, 886–897 (1990).

    ADS  Google Scholar 

  49. Finks, R. M., Reid, R. E. H. & Rigby, J. K. Treatise on Invertebrate Paleontology Part E (Revised) (Geological Society of America and the University of Kansas, 2004).

  50. Chahud, A. & Fairchild, T. R. A new invertebrate from the Ponta Grossa Formation (Devonian), Paraná Basin, Brazil. Rev. Bras. Paleontol. 23, 279–282 (2020).

    Google Scholar 

  51. Wulff, J. in Coral Reefs at the Crossroads (eds Hubbard, D. K. et al.) 103–126 (Springer, 2016).

  52. Keupp, H. & Schweigert, G. Neochoiaella n. gen. (Demospongeae, Choiaellidae)—a second poriferan Lazarus taxon from the Solnhofen Plattenkalk (Upper Jurassic, Southern Germany)? Paläontol. Z. 86, 269–274 (2012).

    Google Scholar 

  53. Bottjer, D. J., Hagadorn, J. W. & Dornbos, S. Q. The Cambrian substrate revolution. GSA Today 10, 1–7 (2000).

    Google Scholar 

  54. Dohrmann, M., Janussen, D., Reitner, J., Collins, A. G. & Wörheide, G. Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Syst. Biol. 57, 388–405 (2008).

    CAS  PubMed  Google Scholar 

  55. Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30, 282–291 (2015).

    PubMed  Google Scholar 

  56. Schlichter, D. in Biology of the Integument: Invertebrates (eds Bereiter-Hahn, J. et al.) 79–95 (Springer, 1984).

  57. de Goeij, J. M., Lesser, M. P. & Pawlik, J. R. in Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization (eds Carballo, J. L. & Bell, J. J.) 373–410 (Springer, 2017).

  58. Leys, S. P., Mackie, G. O. & Reiswig, H. M. The biology of glass sponges. Adv. Mar. Biol. 52, 1–145 (2007).

    CAS  PubMed  Google Scholar 

  59. Finks, R. M. in Series in Geology, Notes for Short Course (ed. Broadhead, T. W.) 101–115 (Univ. Tennessee, 1983).

  60. Nonnenmacher, T. F., Losa, G. A. & Weibel, E. R. Fractals in Biology and Medicine (Birkhäuser, 2013).

  61. Weaver, J. C. et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J. Struct. Biol. 158, 93–106 (2007).

    CAS  PubMed  Google Scholar 

  62. Riesgo, A., Maldonado, M., López-Legentil, S. & Giribet, G. A proposal for the evolution of cathepsin and silicatein in sponges. J. Mol. Evol. 80, 278–291 (2015).

    ADS  CAS  PubMed  Google Scholar 

  63. Hill, M. S. et al. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes. PLoS ONE 8, e50437 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mackie, G. O., Singla, C. L. & Smith, J. E. Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Philos. Trans. R. Soc. Lond. B 301, 365–400 (1983).

    ADS  Google Scholar 

  65. Wu, C. et al. The rangeomorph fossil Charnia from the Ediacaran Shibantan biota in the Yangtze Gorges area, South China. J. Paleontol. https://doi.org/10.1017/jpa.2022.97 (2022).

  66. Reid, R. E. H. A monograph of the Upper Cretaceous Hexactinellida of Great Britain and Northern Ireland Part I. Monogr. Palaeontogr. Soc. 111, 1–46 (1958).

    Google Scholar 

  67. Xiao, S. Extinctions, morphological gaps, major transitions, stem groups and the origin of major clades, with a focus on early animals. Acta Geol. Sin. Engl. Ed. 96, 1821–1829 (2022).

    Google Scholar 

  68. Manuel, M. et al. Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy and the primitive nature of axial symmetry. Syst. Biol. 52, 311–333 (2003).

    PubMed  Google Scholar 

  69. Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    CAS  PubMed  Google Scholar 

  70. Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) https://doi.org/10.1109/GCE.2010.5676129 (IEEE, 2010).

  71. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ronquist, F., Huelsenbeck, J., Teslenko, M., Zhang, C. & Nylander, J. Draft MrBayes version 3.2 manual: tutorials and model summaries. GitHub https://github.com/NBISweden/MrBayes/blob/develop/doc/manual/Manual_MrBayes_v3.2.pdf (2020).

  73. Xiao, S., Chen, Z., Pang, K., Zhou, C. & Yuan, X. The Shibantan Lagerstätte: insights into the Proterozoic–Phanerozoic transition. J. Geol. Soc. 178, 2020–2135 (2021).

    Google Scholar 

  74. Condon, D. et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).

    ADS  CAS  PubMed  Google Scholar 

  75. Huang, T., Chen, D., Ding, Y., Zhou, X. & Zhang, G. SIMS U-Pb zircon geochronological and carbon isotope chemostratigraphic constraints on the Ediacaran–Cambrian boundary succession in the Three Gorges area, South China. J. Earth Sci. 31, 69–78 (2020).

    Google Scholar 

  76. Okada, Y. et al. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng’an and Chengjiang areas, South China. Gondwana Res. 25, 1027–1044 (2014).

    ADS  CAS  Google Scholar 

  77. An, Z. et al. Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo δ13C anomaly in the Yangtze Gorges area, South China. Precambrian Res. 271, 243–253 (2015).

    ADS  CAS  Google Scholar 

  78. Xiao, S., Bykova, N., Kovalick, A. & Gill, B. C. Stable carbon isotopes of sedimentary kerogens and carbonaceous macrofossils from the Ediacaran Miaohe Member in South China: implications for stratigraphic correlation and sources of sedimentary organic carbon. Precambrian Res. 302, 171–179 (2017).

    ADS  CAS  Google Scholar 

  79. Zhou, C. et al. The stratigraphic complexity of the middle Ediacaran carbon isotopic record in the Yangtze Gorges area, South China and its implications for the age and chemostratigraphic significance of the Shuram excursion. Precambrian Res. 288, 23–38 (2017).

    ADS  CAS  Google Scholar 

  80. Liu, Q., Huang, D. & Gong, Y. Sponge fossils from the Cambrian Mantou Formation of Hebi, Henan, Central China. J. China Univ. Geosci. 37, 129–135 (2012).

    CAS  Google Scholar 

  81. Virtual Collection (Digital Atlas of Ancient Life, accessed 23 April 2024); www.digitalatlasofancientlife.org/vc/.

Download references

Acknowledgements

This research was supported by Science Fund for Creative Research Groups of National Natural Science Foundation of China (41921002, 42130207, 41972005, 42272005), National Key R&D Program of China (2022YFF0800100, 2022YFF0802700) and the US National Science Foundation (EAR-2021207 to S.X.). We thank J. Li and W. Yang for help in fossil excavation; W. Yuan and Y. Chen for assistance with laser scanning; G. Mussini for assistance with phylogenetic analyses; and N. Butterfield, Z. Zhao and X. Xian for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.Y., S.X., Z.C., X.W. and B.W. designed the study. X.W., S.X., A.G.L., Z.C., X.Y. and B.W. interpreted the data. Z.C. coordinated the fieldwork. X.W. performed the phylogenetic analyses, compiled data and figures and composed the first draft of the manuscript with substantial contributions from S.X., A.G.L. and all co-authors.

Corresponding authors

Correspondence to Bin Wan, Xunlai Yuan or Shuhai Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Marc Laflamme, Lucy Muir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Geological map and stratigraphic column.

Star in a marks fossil locality on the southern margin of the Huangling anticline. Star in the inset map marks the location of the Huangling anticline on the South China block. Star in b shows the stratigraphic level from which Helicolocellus was discovered. Reproduced from Xiao, S., Chen, Z., Pang, K., Zhou, C. & Yuan, X. The Shibantan Lagerstätte: Insights into the Proterozoic–Phanerozoic transition. J. Geol. Soc. London 178, jgs2020-135 (2020) https://doi.org/10.1144/jgs2020-135 (ref. 73). Sources of geochronometric data: 551.1 ± 0.7 Ma, 632.5 ± 0.5 and 635.2 ± 0.6 Ma from Condon et al.74; 543.4 ± 3.5 Ma from Huang et al.75; and 526.4 ± 5.4 Ma from Okada et al.76. Dashed arrows indicate alternative correlations of the radiometric date from the Miaohe Member77,78,79. Cam. = Cambrian; Cry. = Cryogenian; Fm. = Formation; HMJ = Hamajing Member; Mbr. = Member.

Extended Data Fig. 2 Additional specimens of Helicolocellus cantori gen. et sp. nov.

a, Positive relief of NIGP-176534. Stratigraphic orientation uncertain. Note irregular arrangement of boxes. b, Thin section perpendicular to bedding plane and along dashed line in a, showing boundaries of first order rectangles (arrowed). c, Positive relief on bed sole, NIGP-176535, showing fine grooves along the fringe of specimen. d, Positive relief on bed sole, NIGP-176538. f, fringe. Scale bars, 30 mm (a, d), 10 mm (b), 50 mm (c).

Extended Data Fig. 3 Palaeozoic sponges and candidate sponges with skeletons organized in hierarchical latticework.

a, Pyritized protospongiid Diagoniella, NIGP-155870, from the Mantou Formation of Henan Province, Wuliuan Stage (Cambrian)80. b, Magnification of box in a. Box in b marks dislocated spicules. c. Devonian Hydnoceras, PRI 76741 (Digital Atlas of Ancient Life of the Paleontological Research Institution, Ithaca, New York81; license CC0 1.0), showing helically arranged skeletal tracts. d, Hydnoceras, NIGP-201942, from the Upper Devonian Chemung Formation of New York. e, Magnification of the box in d, showing impressions of spicules. f, Devonian sponge-like fossil Pontagrossia50, from the Ponta Grossa Formation of Paraná State (image provided by Artur Chahud and Thomas Fairchild). Scale bars, 1 mm (a, b), 40 mm (c), 20 mm (d), 10 mm (e), 5 mm (f).

Extended Data Fig. 4 Phylogenetic position of Helicolocellus cantori gen. et sp. nov.

All taxa coded in the Bayesian analysis are included in this figure. Numbers are posterior probabilities for nodes.

Extended Data Fig. 5 Additional phylogenetic topologies run as sensitivity analyses.

a, Ctenophores constrained as sister-group to all other animals58. b. Relationships of Porifera classes constrained by recent molecular phylogenies10 (see Supplementary Information for further details). Numbers are posterior probabilities for nodes.

Supplementary information

Supplementary Information

Information about the phylogenetic database, a list of characters, topological constraints and the data matrix.

Reporting Summary

Peer Review file

Supplementary Data

All measurements of Helicolocellus specimens reported in the main text, with specimen numbers and types of measurements identified in the titles of the sheets.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, A.G., Chen, Z. et al. A late-Ediacaran crown-group sponge animal. Nature 630, 905–911 (2024). https://doi.org/10.1038/s41586-024-07520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07520-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing