Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Jurassic fossil juvenile reveals prolonged life history in early mammals

Abstract

Living mammal groups exhibit rapid juvenile growth with a cessation of growth in adulthood1. Understanding the emergence of this pattern in the earliest mammaliaforms (mammals and their closest extinct relatives) is hindered by a paucity of fossils representing juvenile individuals. We report exceptionally complete juvenile and adult specimens of the Middle Jurassic docodontan Krusatodon, providing anatomical data and insights into the life history of early diverging mammaliaforms. We used synchrotron X-ray micro-computed tomography imaging of cementum growth increments in the teeth2,3,4 to provide evidence of pace of life in a Mesozoic mammaliaform. The adult was about 7 years and the juvenile 7 to 24 months of age at death and in the process of replacing its deciduous dentition with its final, adult generation. When analysed against a dataset of life history parameters for extant mammals5, the relative sequence of adult tooth eruption was already established in Krusatodon and in the range observed in extant mammals but this development was prolonged, taking place during a longer period as part of a significantly longer maximum lifespan than extant mammals of comparable adult body mass (156 g or less). Our findings suggest that early diverging mammaliaforms did not experience the same life histories as extant small-bodied mammals and the fundamental shift to faster growth over a shorter lifespan may not have taken place in mammaliaforms until during or after the Middle Jurassic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: New specimens of K. kirtlingtonensis.
Fig. 2: Juvenile specimen of K. kirtlingtonensis, NMS G.2023.8.1.
Fig. 3: Juvenile and adult skulls of K. kirtlingtonensis, overview of phylogeny and cementum for adult.
Fig. 4: Reconstructed skull and cementum chronology for juvenile K. kirtlingtonensis, NMS G.2023.8.1.
Fig. 5: Analyses of body size and mass against tooth eruption and weaning time.

Similar content being viewed by others

Data availability

The CT and PPC-SRµCT datasets generated and analysed in this study are available in the MorphoSource repository: www.morphosource.org/projects/00000C428. Further data including the cementum increments (images and histograms) and data for body mass scaling relationships are outlined in the Supplementary Information and available at Figshare (https://doi.org/10.6084/m9.figshare.25341508)74.

Code availability

We use Supplementary R code in R studio for our analyses, adapting existing packages and code. No new packages were developed for this study. Supplementary R code scripts are included and available at Figshare (https://doi.org/10.6084/m9.figshare.25341508)74.

References

  1. Western, D. Size, life history and ecology in mammals. Afr. J. Ecol. 17, 185–204 (1979).

    Article  Google Scholar 

  2. Lieberman, D. E. Life history variables preserved in dental cementum microstructure. Science 261, 1162–1164 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Klevezal, G. Recording Structures of Mammals (CRC, 1995).

  4. Newham, E. et al. Reptile-like physiology in Early Jurassic stem-mammals. Nat. Commun. 11, 5121 (2020).

  5. Asher, R. J. & Lehmann, T. Dental eruption in afrotherian mammals. BMC Biol. 6, 14 (2008).

  6. Kemp, T. S. The Origin and Evolution of Mammals (Oxford Univ. Press, 2005).

  7. Lautenschlager, S., Gill, P. G., Luo, Z.-X., Fagan, M. J. & Rayfield, E. J. The role of miniaturization in the evolution of the mammalian jaw and middle ear. Nature 561, 533–537 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Araújo, R. et al. Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy. Nature 607, 726–731 (2022).

    Article  ADS  PubMed  Google Scholar 

  9. O’Meara, R. N. & Asher, R. J. The evolution of growth patterns in mammalian versus nonmammalian cynodonts. Paleobiology 42, 439–464 (2016).

    Article  Google Scholar 

  10. Panciroli, E. et al. Diverse vertebrate assemblage of the Kilmaluag Formation (Bathonian, Middle Jurassic) of Skye, Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 111, 135–156 (2020).

    CAS  Google Scholar 

  11. Benson, R. B. J. et al. Squamates, mammals, salamanders and other small tetrapods from the Middle Jurassic Kilmaluag Formation, Isle of Skye, Scotland. The Anatomical Record Special Issue: 14th Symposium on Mesozoic Terrestrial Ecosystems and Biota 306, 41–42 (Abstract) (2023).

  12. Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. How many species of mammals are there? J. Mammal. 100, 615–615 (2019).

    Article  Google Scholar 

  13. Hughes, L. R. & Hall, L. S. Early development and embryology of the platypus. Philos. Trans. R. Soc. B 353, 1101–1114 (1998).

    Article  CAS  Google Scholar 

  14. Holland, N. & Jackson, S. M. Reproductive behaviour and food consumption associated with the captive breeding of platypus (Ornithorhynchus anatinus). J. Zool. 256, 279–288 (2002).

    Article  Google Scholar 

  15. Thomas, J., Handasyde, K., Parrott, M. L. & Temple-Smith, P. The platypus nest: burrow structure and nesting behaviour in captivity. Austr. J. Zool. 65, 347–356 (2018).

    Article  Google Scholar 

  16. Lillegraven, J. A. Biological considerations of the marsupial–placental dichotomy. Evolution 29, 707–722 (1975).

    Article  PubMed  Google Scholar 

  17. Weaver, L. N. et al. Multituberculate mammals show evidence of a life history strategy similar to that of placentals, not marsupials. Am. Nat. 200, 383–400 (2022).

    Article  PubMed  Google Scholar 

  18. Goswami, A. et al. Do developmental constraints and high integration limit the evolution of the marsupial oral apparatus? Integr. Comp. Biol. 56, 404–415 (2016).

    Article  PubMed  Google Scholar 

  19. Kelly, E. M. & Sears, K. E. Limb specialization in living marsupial and eutherian mammals: constraints on mammalian limb evolution. J. Mammal. 92, 1038–1049 (2011).

    Article  Google Scholar 

  20. Boyce, M. S. Restitution of r- and K-selection as a model of density-dependent natural selection. Annu. Rev. Ecol. Syst. 15, 427–447 (1984).

    Article  Google Scholar 

  21. Calder, W. A. III Size, Function and Life History (Harvard Univ. Press, 1984).

  22. Harvey, P. H. & Purvis, A. in Advanced Ecological Theory: Principles and Applications (ed. McGlade, J.) 232–248 (Blackwell Science, 1999).

  23. Fisher, D. O., Owens, I. P. & Johnson, C. N. The ecological basis of life history variation in marsupials. Ecology 82, 3531–3540 (2001).

    Article  Google Scholar 

  24. Dobson, F. S. & Oli, M. K. Fast and slow life histories of mammals. Ecoscience 14, 292–299 (2007).

    Article  Google Scholar 

  25. Harvey, P. H., Read, A. F. & Promislow, D. E. L. in Oxford Surveys in Evolutionary Biology (eds Harvey, P. H. & Partridge, L.) 13–31 (Oxford Univ. Press, 1989).

  26. Gaillard, J. M. et al. An analysis of demographic tactics in birds and mammals. Oikos 56, 59–76 (1989).

  27. Purvis, A. & Harvey, P. H. Mammal life‐history evolution: a comparative test of Charnov’s model. J. Zool. 237, 259–283 (1995).

    Article  Google Scholar 

  28. Oli, M. K. & Dobson, F. S. The relative importance of life-history variables to population growth rate in mammals: Cole’s prediction revisited. Am. Nat. 161, 422–440 (2003).

    Article  PubMed  Google Scholar 

  29. Oli, M. K. The fast–slow continuum and mammalian life-history patterns: an empirical evaluation. Basic Appl. Ecol. 5, 449–463 (2004).

    Article  Google Scholar 

  30. Pond, C. M. The significance of lactation in the evolution of mammals. Evolution 31, 177–199 (1977).

  31. Luo, Z.-X., Kielan-Jaworowska, K. & Cifelli, R. L. Evolution of dental replacement in mammals. Bull. Carnegie Mus. Nat. Hist. 36, 159–175 (2004).

  32. Smith, B. H. in Development, Function and Evolution of Teeth (eds Teaford, M. F. et al.) 212–227 (Cambridge Univ. Press, 2000).

  33. Cifelli, R. L. et al. Fossil evidence for the origin of the marsupial pattern of tooth replacement. Nature 379, 715–718 (1996).

    Article  ADS  CAS  Google Scholar 

  34. van Nievelt, A. F. H. & Smith, K. K. The significance of reduced functional tooth replacement in marsupial and placental mammals. Paleobiology 31, 324–346 (2005).

    Article  Google Scholar 

  35. Luo, Z.-X. & Martin, T. Analysis of molar structure and phylogeny of docodont genera. Bull. Carnegie Mus. Nat. Hist. 39, 27–47 (2007).

    Article  Google Scholar 

  36. Schultz, J. A., Bhullar, B.-A. S. & Luo, Z.-X. Re-examination of the Jurassic mammaliaform Docodon victor by computed tomography and occlusal functional analysis. J. Mamm. Evol. 26, 9–38 (2019).

    Article  Google Scholar 

  37. Panciroli, E. et al. New species of mammaliaform and the cranium of Borealestes (Mammaliformes: Docodonta) from the Middle Jurassic of the British Isles. Zool. J. Linnean Soc. 192, 1323–1362 (2021).

    Article  Google Scholar 

  38. Luo, Z.-X. & Martin, T. Mandibular and dental characteristics of the Late Jurassic mammal Henkelotherium guimarotae (Paurodontidae, Dryolestida). Paläontol. Z. 97, 569–619 (2023).

  39. Martin, T. & Schultz, J. A. Deciduous dentition, tooth replacement and mandibular growth in the Late Jurassic docodontan Haldanodon exspectatus (Mammaliaformes). J. Mamm. Evol. 30, 507–531 (2023).

  40. Astúa, D. & Leiner, N. O. Tooth eruption sequence and replacement pattern in woolly opossums, genus Caluromys (Didelphimorphia: Didelphidae). J. Mammal. 89, 244–251 (2008).

    Article  Google Scholar 

  41. Kermack, K. A., Mussett, F. & Rigney, H. W. The lower jaw of Morganucodon. Zool. J. Linnean Soc. 53, 87–175 (1973).

    Article  Google Scholar 

  42. Crompton, A. W. & Luo, Z. in Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians and Marsupials (eds Szalay, F. S. et al.) 30–44 (Springer, 1993).

  43. Kermack, K. A., Mussett, F. & Rigney, H. W. The skull of Morganucodon. Zool. J. Linnean Soc. 71, 1–158 (1981).

    Article  Google Scholar 

  44. Meng, Q.-J. et al. New gliding mammaliaforms from the Jurassic. Nature 548, 291–296 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Regnault, S., Fahn-Lai, P., Norris, R. M. & Pierce, S. E. Shoulder muscle architecture in the echidna (Monotremata: Tachyglossus aculeatus) indicates conserved functional properties. J. Mamm. Evol. 27, 591–603 (2020).

  46. Martin, T. Postcranial anatomy of Haldanodon exspectatus (Mammalia, Docodonta) from the Late Jurassic (Kimmeridgian) of Portugal and its bearing for mammalian evolution. Zool. J. Linnean Soc. 145, 219–248 (2005).

    Article  Google Scholar 

  47. Panciroli, E. et al. Postcrania of Borealestes (Mammaliformes: Docodonta) and the emergence of ecomorphological diversity in early mammals. Palaeontology 65, e12577 (2022).

    Article  Google Scholar 

  48. Meng, Q. J. et al. An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347, 764–768 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Luo, Z.-X. et al. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science 347, 760–764 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Zhou, C.-F., Bhullar, B.-A. S., Neander, A. I., Martin, T. & Luo, Z.-X. New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science 365, 276–279 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Naji, S. et al. Cementochronology, to cut or not to cut? Int. J. Paleopathol. 15, 113–119 (2016).

    Article  PubMed  Google Scholar 

  52. Furseth, R. A microradiographic and electron microscopic study of the cementum of human deciduous teeth. Acta Odontol. Scand. 25, 613–646 (1967).

    Article  CAS  PubMed  Google Scholar 

  53. Grue, H. & Jensen, B. Review of the formation of incremental lines in tooth cementum of terrestrial mammals [age determination, game animal, variation, sex, reproductive cycle, climate, region, condition of the animal]. Danish Rev. Game Biol. 11, 1–48 (1979).

    Google Scholar 

  54. Crowe, D. M. The presence of annuli in bobcat tooth cementum layers. J. Wildl. Manag. 36, 1330–1332 (1972).

  55. Crowe, D. M. & Strickland, M. D. Dental annulation in the American badger. J. Mammal. 56, 269–272 (1975).

    Article  CAS  PubMed  Google Scholar 

  56. Fairall, N. Growth and age determination in the hyrax Procavia capensis. Afr. Zool. 15, 16–21 (1980).

    Google Scholar 

  57. Luo, Z.-X. Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Magalhães, J. P. D., Costa, J. & Church, G. M. An analysis of the relationship between metabolism, developmental schedules and longevity using phylogenetic independent contrasts. J. Gerontol. A 62, 149–160 (2007).

    Article  Google Scholar 

  59. Steyn, D. & Hanks, J. Age determination and growth in the hyrax Procavia capensis (Mammalia: Procaviidae). J. Zool. 201, 247–257 (1983).

    Article  Google Scholar 

  60. Asher, R. J. et al. Dental eruption and growth in Hyracoidea (Mammalia, Afrotheria). J. Vertebr. Paleontol. 37, e1317638 (2017).

    Article  Google Scholar 

  61. Schultz, A. H. in Human Growth Vol. III (ed. Tanner, J. M.) 1–20 (Pergamon, 1960).

  62. Godfrey, L. R., Samonds, K. E., Wright, P. C. & King, S. J. Schultz’s unruly rule: dental developmental sequences and schedules in small-bodied, folivorous lemurs. Folia Primatolog. 76, 77–99 (2005).

    Article  Google Scholar 

  63. Monson, T. A. & Hlusko, L. J. The evolution of dental eruption sequence in artiodactyls. J. Mamm. Evol. 25, 15–26 (2018).

    Article  Google Scholar 

  64. Frýdlová, P. et al. Determinate growth is predominant and likely ancestral in squamate reptiles. Proc. R. Soc. B 287, 20202737 (2020).

    Article  PubMed  Google Scholar 

  65. Newham, E., Gill, P. G. & Corfe, I. J. New tools suggest a middle Jurassic origin for mammalian endothermy: advances in state‐of‐the‐art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time. BioEssays 44, 2100060 (2022).

    Article  Google Scholar 

  66. Avaria-Llautureo, J., Hernández, C. E., Rodríguez-Serrano, E. & Venditti, C. The decoupled nature of basal metabolic rate and body temperature in endotherm evolution. Nature 572, 651–654 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Benoit, J. et al. The evolution of the maxillary canal in Probainognathia (Cynodontia, Synapsida): reassessment of the homology of the infraorbital foramen in mammalian ancestors. J. Mammal. Evol. 27, 329–348 (2020).

  68. Mirone, A., Brun, E., Gouillart, E., Tafforeau, P. & Kieffer, J. The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instrum. Methods Phys. Res. B 324, 41–48 (2014).

    Article  ADS  CAS  Google Scholar 

  69. Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  70. Lyckegaard, A., Johnson, G. & Tafforeau, P. Correction of ring artifacts in X-ray tomographic images. Int. J. Tomogr. Stat. 18, 1–9 (2011).

    Google Scholar 

  71. Foster, J. R. Preliminary body mass estimates for mammalian genera of the Morrison Formation (Upper Jurassic, North America). PaleoBios 28, 114–122 (2009).

    Google Scholar 

  72. Campione, N. E. & Evans, D. C. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol. 10, 60 (2012).

  73. Promislow, D. E. & Harvey, P. H. Living fast and dying young: a comparative analysis of life‐history variation among mammals. J. Zool. 220, 417–437 (1990).

    Article  Google Scholar 

  74. Panciroli, E. et al. Jurassic fossil juvenile reveals protracted life history in early mammals. Figshare https://doi.org/10.6084/m9.figshare.25341508 (2024).

Download references

Acknowledgements

E.P. was funded by the Leverhulme Trust, the University of Oxford’s John Fell Fund and Linacre College’s EPA Cephalosporin Fellowship. Some of the scans of NMS G.1992.47.124 and NMS G.1992.47.122.1 were undertaken while E.P. was funded by the Natural Environment Research Council (NE/L002558/1). We thank K. Smithson and T. Davies for assistance with CT scanning and E. Griffiths, A.-M. Serra and S. Wright for segmenting scan data of extant mammal limb bones. We also thank R. Asher, Y. Candela, M. Day and Z. Timmons for loan of specimens and T. Davies, N. M. Morales García, P. Gill and J. Schultz for their assistance obtaining scan data. We acknowledge the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source at the Paul Scherrer Institute for provision of synchrotron radiation facilities and we would like to thank the beamline staff for assistance and support in using beamline ID19 (ESRF proposal ES587) and TOMCAT (proposal 20182126). We are grateful to N. Brocklehurst for assistance with R coding. We would like to thank NatureScot and the John Muir Trust for permission to work on the Elgol Coast SSSI and NCO and the fieldwork teams for their work. All fieldwork has been carried out in adherence to The Scottish Fossil Code.

Author information

Authors and Affiliations

Authors

Contributions

E.P. was principle investigator. E.P., R.B., S.W., N.F. and Z.-X.L. contributed to the conception and design of the overall project. E.P., R.B. and E.N. contributed to design of methodology. S.W. and N.F. provided access to specimens and logistical support. E.P., R.B. and S.W. carried out fieldwork. E.P., R.B., V.F., E.N. and S.W. collected micro-CT and synchrotron CT data. E.P. carried out digital segmentation, data collection and histological analysis and life history calculations. E.N. carried out further cementum analysis. R.B. carried out body mass calculations. E.P. and M.H. carried out digital reconstruction, visualization and figure preparation. E.P. led manuscript preparation and writing and all authors contributed to editing the manuscript.

Corresponding author

Correspondence to Elsa Panciroli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Gregory Funston, Pamela Gill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Molar morphology in Krusatodon kirtlingtonensis.

All digital renderings except for diagrammatic outlines and g (photograph). a-f, holotype lower right molar NHMUK PV M.46526 in: a, lingual; b, labial; c, occlusal; d, diagrammatic occlusal; e, posterior; f, anterior view. g-h NHMUK PV M.46437 upper left molar (M3) in: g, occlusal; h diagrammatic occlusal views. i-k, adult NMS. G.1992.47.122.1: I, lower m2 in lingual view; j and occlusal view; k, upper molar row occlusal view. l-n, juvenile NMS G.2023.8.1: l, lower left molar tooth row plus dp5 occlusal view; m and lingual view. n, upper right molar tooth row plus dP5 in occlusal view. o-p, mirrored versions of D and H to facilitate comparison. q, results of phylogenetic analysis for Docodonta including new scores for Krusatodon. a-f same scale, g-h same scale, i-k same scale, l-n same scale. All scale bars = 1 mm.

Extended Data Fig. 2 Reconstructed skull of Krusatodon kirtlingtonensis.

a-d, NMS. G.1992.47.122.1; e-f, NMS G.2023.8.1. a and e, left lateral view of digitally rendered skull elements, placed in anatomically correct positions. b-d and f, diagrammatic reconstructions of skull in: b and f, left lateral; c, anterior/rostral; d, posterior/caudal views. g, anterior portion of skull showing extent of elements with dotted lines. h, simplified diagram of teeth showing replacement stage in NMS G.2023.8.1. Scale bar same for a-f = 10 mm. Scale bar for g = 5 mm.

Extended Data Fig. 3 Dentaries and maxillae of adult Krusatodon kirtlingtonensis NMS. G.1992.47.122.1.

a, left dentary in medial view; b, left dentary of juvenile NMS G.2023.8.1 in medial view for comparison; c, left dentary in lateral view; d, location of dental cementum data for i1-c in specimen NMS G.1992.47.124, locations marked with yellow boxes, numbers correspond to Supplementary Table 8 and Supplementary Files; e, right dentary in lateral view; f, partially reconstructed dentaries in occlusal view; g, left maxilla in lateral view; h, right maxilla in lateral; i and medial views; j, partial reconstruction of the maxillae in occlusal view. Scale same for a-f and for g-j. All scale bars = 10 mm.

Extended Data Fig. 4 Dentaries of juvenile Krusatodon kirtlingtonensis NMS G.2023.8.1.

a-c, left dentary and teeth: a, lower tooth row in medial view showing deciduous (orange) and permanent generations; b, medial; c, lateral views. d-f, right dentary and teeth: d, lateral; e, medial views; f, lower tooth row in medial view showing deciduous (orange) and permanent generations. g, partially reconstructed dentaries in occlusal view. h, diagrammatic reconstruction of postdentary bones. Arrows indicate anterior direction. Scale bar same for b-e and g = 10 mm. Scale bar for a and f = 5 mm.

Extended Data Fig. 5 Maxillae and premaxillae of juvenile Krusatodon kirtlingtonensis NMS G.2023.8.1.

a-c, left maxilla and premaxilla: a, upper tooth row in lateral view showing deciduous (orange) and permanent generations; b, lateral; c and occlusal views. d-f, right maxilla and premaxilla: d, occlusal; e and lateral views; f, upper tooth row in lateral view showing deciduous (orange) and permanent generations. g, partial reconstruction of maxillae and premaxillae in occlusal view. Arrows indicate anterior direction. Scale bar same in b-e and g = 10 mm. Scale bars in a and f = 5 mm.

Extended Data Fig. 6 Postcranial skeleton of Krusatodon kirtlingtonensis.

a-b, e-f, g, i-j, l, n and p, adult NMS. G.1992.47.122.1. c-d, h, k and m, juvenile NMS G.2023.8.1. a, right clavicle; b, manubria; c, sacrum in dorsal view; d, sacrum in ventral view; e, left femur in posterior view; f, left femur in lateral view. g-h, left humeri in anterior view; i, left radius; j-k, left ulnae in anterior view; l, right pelvic girdle in lateral view; m, posterior of the right ilium in lateral view; n, left tibia in medial view; o, distal tibia in Eucosmodon adapted from Yuan et al. (2013); p, distal tibia showing condyles. Scale same for i-k. Scale bars a-d and l-k = 5 mm. All other scale bars = 10 mm.

Extended Data Fig. 7 Manus and pes of Krusatodon kirtlingtonensis NMS. G.1992.47.122.1.

a, speculative reconstruction using preserved elements of right manus; b, speculative reconstruction using preserved elements of right pes, mirrored calcaneus in paler green. Only named elements have confident identifications, so all placements for other elements are speculative. c-f, left calcaneus in: c, dorsal; d, lateral; e, ventral; f and medial views. g, example of ungual (position unknown); h-i, os calcaris; j, os calcaris in Gobiconodon, adapted from Hurum et al (2006). k-m, right astragalus in: k, dorsal; l, lateral; m and ventral views. Scale same for a-b = 10 mm. Scale same for c-g and k-l = 5 mm. Scale in h-i = 5 mm. Scale in j = 10 mm.

Extended Data Fig. 8 Evolution of the mammaliaform procoracoid.

a, the addition of information from Krusatodon suggests two independent losses of the procoracoid: once in Docodonta and later in stem therians; b, an alternative hypothesis for shoulder evolution requires three homoplasies; c, incomplete scapulacoracoid of juvenile Krusatodon NMS G.2023.8.1; d, scapulacoracoid in adult Krusatodon NMS. G.1992.47.122.1; e, diagrammatic reconstruction of the pectoral girdle.

Extended Data Fig. 9 Location of histological sections in the left tooth rows of juvenile Krusatodon NMS G.2023.8.1, indicated by yellow rectangles.

a, left upper tooth row with loci labelled; b, left upper tooth row with locations of histological sections; c, left lower tooth row with locations of histological sections; d, left lower tooth row with loci labelled. Names of sections correspond to Supplementary Files. See Figs. 34 in main paper and Supplementary Table 8 for cementum increment pair counts.

Extended Data Fig. 10 Location of histological sections in the right tooth rows of juvenile Krusatodon NMS G.2023.8.1, indicated by yellow rectangles.

a, right upper tooth row with loci labelled; b, right upper tooth row with locations of histological sections; c, right lower tooth row with locations of histological sections; d, right lower tooth row with loci labelled. Sections obtained using synchrotron tomographic imaging. Names of sections correspond to Supplementary Files. See Figs. 34 in main paper and Supplementary Table 8 for cementum increment pair counts.

Supplementary information

Supplementary Information

Details of the methods used for body mass estimations for K. kirtlingtonensis, using dataset of 158 species, spanning 4.0 g to 130 kg adult body mass. Systematic section, including updated referred material and diagnosis for K. kirtlingtonensis. Full anatomical description of the crania and postcrania of Krusatodon. Updated phylogenetic analysis based on ref. 47, incorporating character scores for K. kirtlingtonensis. Summary of changes to existing character scores in the matrix. Details of new information on the loss of the procoracoid in Mammaliaformes based on its presence in NMS G.2023.8.1 and NMS G.1992.47.122.1. Explanation of the methods used to determine the annual cementum deposition in the dentition of NMS G.2023.8.1 and NMS G.1992.47.122.1, using PPC-SRµCT. Code used in analyses of body size against postcanine dentition, percentage of postcanine eruption at weaning, body mass against age and birth, weaning and adult mass and body mass scaling relationships. Also available on Figshare: https://doi.org/10.6084/m9.figshare.25341508. This file also contains Supplementary Tables 3–8 and references.

Reporting Summary

Supplementary Table 1

Supplementary Table 2

R code

Codes used in analyses; adapted from existing packages.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panciroli, E., Benson, R.B.J., Fernandez, V. et al. Jurassic fossil juvenile reveals prolonged life history in early mammals. Nature 632, 815–822 (2024). https://doi.org/10.1038/s41586-024-07733-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07733-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing